Нажмите Enter для поиска, Esc для отмены

ANALYSIS OF CANNABIS SATIVA L. COLLECTION ACCESSIONS FOR CANNABINOID CONTENS AND CHEMOTYPE

Article language

Українська, Русский, English

Print date

20.12.19

Date posted online

11.04.2020

Institution

Institute of Bast Crops of NAAS, Plant Production Institute nd. a. V. Ya. Yuriev of NAAS

Bibliography

  1. Preedy VR, editor. 2017. Handbook of Cannabis and related pathologies: biology, pharmacology, diagnosis, and treatment. London: Academic Press. 1170 p. doi: 10.1016/C2013‑0‑18721-1
  2. Mahlberg PG, Kim ES. 2004. Accumulation of cannabinoids in glandular trichomes of Cannabis (Cannabaceae). Journal of Industrial Hemp. 9(1): 15–36. doi: 10.1300/J237v09n01_04
  3. Happyana N, Agnolet S, Muntendam R, Van Dam A, Schneider B, Kayser O. 2013. Analysis of cannabinoids in laser-microdissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR. Phytochemistry. 87: 51–59. doi: 10.1016/j.phytochem.2012.11.001
  4. Fellermeier M, Zenk MH. 1998. Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Letters. 427(2): 283–285. doi: 10.1016/S0014-5793(98)00450-5
  5. Sirikantaramas S, Morimoto S, Shoyama Y, Ishikawa Y, Wada Y, Shoyama Y. 2004. The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of Δ1‑tetrahydrocannabinolic acid synthase from Cannabis sativa L. J. Biol. Chem. 279(38): 39767–39774. doi: 10.1074/jbc.M403693200
  6. Sirikantaramas S, Taura F, Tanaka Y, Ishikawa Y, Morimoto S, Shoyama Y. 2005. Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol. 46(9): 1578–1582. doi: 10.1093/pcp/pci166
  7. Taura F, Sirikantaramas S, Shoyama Y, Yoshikai K, Shoyama Y, Morimoto S. 2007. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Letters. 581(16): 2929–2934. doi: 10.1016/j.febslet.2007.05.043
  8. Morimoto S, Komatsu K. Taura F. Shoyama Y. 1998. Purification and characterization of cannabichromenic acid synthase from Cannabis sativa. Phytochemistry. 49(6): 1525–1529. doi: 10.1016/S0031-9422(98)00278-7
  9. de Meijer EP, Bagatta M, Carboni A, Crucitti P, Moliterni VM, Ranalli P, Mandolino G. 2003. The inheritance of chemical phenotype in Cannabis sativa L. Genetics. 163(1): 335–346.
  10. Weiblen GD, Wenger JP, Craft KJ, ElSohly MA, Mehmedic Z, Treiber EL, Marks MD. Gene duplication and divergence affecting drug content in Cannabis sativa. New Phytol. 2015. 208(4): 1241–1250. DOI: 10.1111/nph.13562
  11. Sarsenbaev KN, Kozhamzharova LS, Yessimsiitova Z, Seitbayev KZH. 2013. Polymorphism of DNA and accumulation of cannabinoids by the cultivated and wild hemp in Chu Valley. World Appl. Sci. J. 26(6): 744–749. doi: 10.5829/idosi.wasj.2013.26.06.13381
  12. Aizpurua-Olaizola O, Soydaner U, Ozturk E, Schibano D, Simsir Y, Navarro P, Etxebarria N, Usobiaga A. 2016. Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants from different chemotypes. J. Nat. Prod. 79(2): 324−331. doi: 10.1021/acs.jnatprod.5b00949
  13. Namdar D, Mazuz M, Ion A, Koltai H. 2018. Variation in the compositions of cannabinoid and terpenoids in Cannabis sativa derived from inflorescence position along the stem and extraction methods. Ind. Crops Prod. 113: 376–382. doi: 10.1016/j.indcrop.2018.01.060
  14. Pacifico D, Miselli F, Carboni A, Moschella A, Mandolino G. 2007. Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L. Euphytica. 160(2): 231–240. doi: 10.1007/s10681-007-9543-y
  15. Pacifico D, Miselli F, Micheler M, Carboni A, Ranalli P, Mandolino G. 2006. Genetics and marker-assisted selection of the chemotype in Cannabis sativa L. Mol. Breeding. 17(3): 257–268. doi: 10.1007/s11032-005-5681-x
  16. Welling MT, Liu L, Shapter T, Raymond CA, King GJ. 2016. Characterisation of cannabinoid composition in a diverse Cannabis sativa L. germplasm collection. Euphytica. 208(3): 463–475. doi: 10.1007/s10681-015-1585-y
  17. Mishchenko S, Mokher J, Laiko I, Burbulis N, Kyrychenko H, Dudukova S. 2017. Phenological growth stages of hemp (Cannabis sativa L.): codification and description according to the BBCH scale. Agricultural sciences. 24(2): 31–36. doi: 10.6001/zemesukiomokslai.v24i2.3496
  18. Small E, Beckstead HD. 1973. Common cannabinoid phenotypes in 350 stocks of Cannabis. Lloydia. 6(2): 144–165.
  19. Fournier G, Richez-Dumanois C, Duvezin J, Mathieu J.-P, Paris M. 1987. Identification of a new chemotype in Cannabis sativa: cannabigerol-dominant plants, biogenetic and agronomic prospects. Planta Medica. 53(3): 277–280. doi: 10.1055/s-2006-962705
  20. Mandolino G, Carboni A. 2004. Potential of marker-assisted selection in hemp genetic improvement. Euphytica. 140(1): 107–120. doi: 10.1007/s10681‑004‑4759‑6
  21. Mishchenko SV. 2012. Correlations between basic cannabinoid compounds in plants of modern non narcotic hemp varieties. Visnyk Poltavskoyi Derzhavnoyi Ahrarnoyi Akademiyi. 2: 65–69. doi: 10.31210/visnyk2012.02.14
  22. Mandolino G, Bagatta M, Carboni A, Ranalli P, de Meijer E. Qualitative and quantitative aspects of the inheritance of chemical phenotype in Cannabis. Journal of Industrial Hemp. 2003. 8(2): 51–72. doi: 10.1300/J237v08n02_04

Section

SOURCES AND DONORS

Abstract

 

Aim. To investigate hemp (Cannabis sativa L.) collection accessions of different genetic and eco-geographical origin in terms of major cannabinoid compound contents – cannabidiol (CBD), tetrahydrocannabinol (THC) and cannabigerol (CBG), to establish chemotypes of the accessions and correlations between cannabinoid contents.

Results and Discussion. Fifty five hemp accessions were analyzed by gas-liquid chromatography. The identified cannabinoid compounds showed variability. The CBD content ranged from 0.0052 to 1.7251 %; the THC content - from 0.0000 (complete absence) to 0.0775 % (does not exceed the law-allowable level); and the CBG content - from 0.0000 (complete absence) to 0.8892 %. Twenty-one accessions (38 %), ВО203327, ЮС 12, UF0600047, Odnodomni 8, ВО78142, ВО5799, UF0600145, UF0600146, ВО2539, UF0600183, YuS 58, Malo-Perevozskaya, Hibryd 3, Yuzhnaya Bolshe-Pisarevskaya, Almetyevskaya, UF0600253, Santika, Lipko, Silvana, Fedora 17, and Vera, were distinguished due to high CBD content. Nine accessions (16.4 %), YuSO 31, Hlukhivski 51, Hliana, Kirovskaya К-314, Mykolaichyk, Artemida, Harmoniia, Mih 2, and Hlukhivski 85 had no THC at al. Three accessions (5.4 % of the total), UF0600253, Mozdokskaya and VIK CBN, were distinguished because of high CBG content.

Conclusions. The accessions distinguished were recommended for use in practical breeding, in particular for developing medicinal varieties with a high content of CBD and/or wiithout CBG or THC. The analyzed accessions belonged to 3 hemp сhemotypes: III (36 accessions or 65.5 %), IV (1 accession or 1.8 %) and V (18 accessions or 32.7 % of the total). Strong correlations between CBD and THC and no relationships between CBG and other cannabinoid compounds have been established. Chemotype III accessions showed weaker correlations compared with chemotype V. This pattern should be taken into account, when selecting starting forms for breeding.

Keywords

hemp, genetic resources, cannabidiol, tetrahydrocannabinol, cannabigerol, chemotype