Нажмите Enter для поиска, Esc для отмены


Article language

Українська, Русский, English

Print date


Date posted online



Institute of Bast Crops of NAAS



  1. Kunakh VA. 1999. Variability of the plant genome in the process of dedifferentiation and callus formation in vitro. Plant Physiol. 46(6): 919-929.

  2. Millam S, Obert B, Pretova A. 2005. Plant cell and biotechnology studies in Linum usitatissimum – a review. Plant Cell, Tissue and Organ Culture. 82(1): 93-103. DOI: 10.1007/s11240-004-6961-6

  3. Evtimova M, Vlahova M, Atanassov A. 2005. Flax improvement by biotechnology means. Journal of Natural Fibers. 2(2): 17-34. DOI: 10.1300/J395v02n02_02

  4. Rutkowska-Krause I, Mankowska G, Lukaszewicz M, Szopa J. 2003. Regeneration of flax (Linum usitatissimum L.) plants from anther culture and somatic tissue with increased resistance to Fusarium oxysporum. Plant Cell Reports. 22(2): 110-116. DOI: 10.1007/ s00299‑003‑0662-1

  5. Millam S, Davidson D, Powell W. 1992. The use of flax (Linum usitatissimum) as a model system for studies on organogenesis in vitro: the effect of different carbohydrates. Plant Cell, Tissue and Organ Culture. 28(2): 163-166. DOI: 10.1007/BF00055512

  6. Chen Y, Dribnenki P. 2002. Effect of genotype and medium composition on flax Linum usitatissimum L. anther culture. Plant Cell Reports. 21(3): P. 204-207. DOI: 10.1007/s00299-002-0500-x

  7. Burbulis N, Blinstrubiene A, Sliesaravicius A, Venskutoniene E. 2005. Influence of genotype, growth regulators, sucrose level and preconditioning of donor plants on flax (Linum usitatissimum L.) anther culture. Acta Biologica Hungarica. 56(3-4): 323-331. DOI: 10.1556/ABiol.56.2005.3‑4.15

  8. Burbulis N, Blinstrubiene A. 2011. Genotypic and exogenous factors affecting linseed (Linum usitatissimum L.) anther culture. Journal of Food, Agriculture and Environment. 9(3-4): 364-367. DOI: 10.1234/4.2011.2285

  9. Burbulis N, Blinstrubiene A, Masiene R, Jonytiene V. 2012. Influence of genotype, growth regulators and sucrose concentration on linseed (Linum usitatissimum L.) anther culture. Journal of Food, Agriculture and Environment. 10(3-4): 764–767. DOI: 10.1234/4.2012.3509

  10. Soroka AI. 2010. Peculiarities of donor plant preparation and flax anther cultivation in vitro for haploid plant production. Visn Zap Nats Univ. Biol Sci. 2: 13-18.

  11. Siegien I, Adamczuk A, Wróblewska K. 2013. Light affects in vitro organogenesis of Linum usitatissimum L. and its cyanogenic potential. Acta Phys Plant. 35(3): 781-789. DOI: 10.1007/s11738-012-1118-4

  12. Mundhara R, Rashid A. 2006. TDZ-induced triple-response and shoot formation on intact seedlings of Linum, putative role of ethylene in regeneration. Plant Sci. 170(2): 185-190. DOI: 10.1016/j.plantsci.2005.06.015

  13. Seta-Koselska A, Skorzynska-Polit E. 2017. Optimization of in vitro culture conditions for obtaining flax (Linum usitatissimum L. cv. Modran) cell suspension culture. BioTechn. 98(3): 183-188. DOI: 10.5114/bta.2017.70796

  14. Blinstrubiene A, Burbulis N, Masiene R. 2017. Genotypic and exogenous factors affecting linseed ovary culture. Zemdirbyste-Agriculture. 104(3): 243-248. DOI: 10.13080/ z‑a.2017.104.031

  15. Yildiz M, Health C, Telci C, Erkilich EG. 2011. The effect of in vitro competition on shoot regeneration from hypocotyl explants of Linum usitatissimum. Turk J Bot. 35(2): 211-218. DOI: 10.3906/bot-1005-26

  16. Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Phys Plant. 15(3): 473-497. DOI: 10.1111/ j.1399‑3054. 1962.tb08052.x




Goal. The study of different genetic origin collection samples of flax (Linum usitatissimum L.) for the frequency and intensity of callusogenesis and organogenesis in vitro conditions, the establishment of differences in convar. elongatum, intermedia and humile was the goal of our research.

Results and Discussion. The L. usitatissimum L. species is significantly capable of forming callus and shoot regeneration in vitro under cultivation conditions with a photoperiod of 16 hours, relative humidity of 60 – 80 %, air temperature of 22 – 24°С and agarized Murashige and Skoog medium, supplemented 0.05 mg/L of 1‑naphthylacetic acid, 1.0 mg/L of 6‑benzylaminopurine and 30 g/L of sucrose. The frequency and intensity of callusogenesis and organogenesis depends on the genotype. Minimum and maximum values of signs were set for Глінум (UF0401603), Кром (UF0401494), Орион (UF0401867), Есмань (UF0402071), Белита (UF0402134), Nor Man (UF0401792), Mapun M.A. (UF0401819), Lisa (UF0401830), Taragvi (UF0401864), Visamo (1–356)/L. monnseo (UF0402178), Ручеек (UF0401897), Lirina (UF0401900), Опус (UF0402142), СКі‑1 (UF0402143), Ruta (UF0402228) samples. The frequency of callusogenesis was 15.0 – 100 %, the calus mass from one explant was 0.56 – 1.51 g, the frequency of organogenesis was 10.0 – 93.8 %, the number of shoots was 1.4 – 4.0 pieces and the height of the shoots was 0.78 – 2.37 cm.

Conclusions. Collection samples of Глінум (Ukraine), Кром (Russia), Visamo (1‑356)/L. monnseo (Czech Republic), Ручеек (Russia) and СКі‑1 (USA) were the best of complex signs (callusogenesis frequency, organogenesis frequency and number of shoots). Elongata flax and humile flax are characterized by the highest frequency of callusogenesis and organogenesis on hypocotyl and epicotyl explants, intermedia flax forms the largest mass of callus from the explant, the number of regenerated shoots and their height, intermedia flax has the greatest variation of the studied signs.


flax, collection accessions, in vitro, phytohormones, callus, organogenesis